
Multivariable Calculus MATH20901, Exam Solutions, January 2017

1. (a) (From first part of course, revision of Calculus 1, trivial unseen example)

(i) With F1 = x2 + y3, F2 = cosx+ sin y

F′(x) =

(

∂F1/∂x ∂F1/∂y
∂F2/∂x ∂F2/∂y

)

=

(

2x 3y2

− sin x cos y

)

(ii) (Following methods in notes, worksheets)
From Taylor series around x0 = (x0, y0) = (1

2
π, 0)

F1(x) = F1(x0) + (x− 1

2
π)

∂F1

∂x
(x0) + y

∂F1

∂y
(x0) + h.o.t. ≈ 1

4
π2 + (x− 1

2
π)π

and

F2(x) = F2(x0) + (x− 1

2
π)

∂F2

∂x
(x0) + y

∂F2

∂y
(x0) + h.o.t. ≈ −(x− 1

2
π) + y

gives answer.

(iii) (Slightly harder part of course material. Similar examples on worksheets.)
The system

u = x2 + y3, v = cosx+ sin y

is invertible to get x = x(u, v) and y = y(u, v) provided the Jacobian JF 6= 0.
Here

JF = 2x cos y + 3y2 sin x.

Along x0 = 0 JF = 0 so not invertible. Along x0 =
1

2
π JF = π cos y+3y2. This is

always positive as a quick sketch will confirm. Since it doesn’t vanish, the system
is invertible along this line.

(b) (i) (First part tests path integral calculation (third part of course). V. similar to
notes/examples)
Parametrise circle with r = p(θ) = (a cos θ, a sin θ) for 0 < θ ≤ 2π. Then
p′(θ) = (−a sin θ, a cos θ) and so the integral is

∫

2π

0

(

− sin θ

a
,
cos θ

a

)

· (−a sin θ, a cos θ) dθ = 2π.

(ii) (One or two examples on worksheets to follow – a less well trodden part of the
course)
Green’s theorem in the plane states that if G = (P,Q) then

∫

C

G · dr =

∫

S

(

∂Q

∂x
−

∂P

∂y

)

dxdy

where S is the interior of C. Here we have

∂Q

∂x
−

∂P

∂y
=

1

x2 + y2
−

2x2

(x2 + y2)2
+

1

x2 + y2
−

2y2

(x2 + y2)2

and so
∫

C

G · dr =

∫

S

0 dxdy = 0.

(iii) (Unseen. Similar issue referenced in one question on a problem sheet)
They do not agree, but normally they should... the problem here is that P and
Q are singular at the origin and non-integrable and Green’s theorem in the plane
(Stokes’ theorem) assumes integrability.
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2. Tests differential calculus (2nd part of course) and integral calculus (3rd part of course).

(a) (Bookwork)

(i) ∇ · r = ∂xi/∂xi = 3;
(ii) ∇

√

x2 + y2 + z2 = (x, y, z)/
√

x2 + y2 + z2 = r/r.

(b) (i) (Homework example)

∇ · (f∇g) =
∂

∂xi

(

f
∂g

∂xi

)

=
∂f

∂xi

∂g

∂xi

+ f
∂2g

∂x2

i

= ∇f · ∇g + f∆g

(ii) (Bookwork)
By Divergence theorem and using part (i)

∫

S

n̂ · (f∇g) dS =

∫

V

∇ · (f∇g) dV =

∫

V

∇f · ∇g + f∆g dV

and then repeat with f and g interchanged and subtract to get result.

(c) (Unseen example, mixture of easier and harder bits.)

In notes we have ∇f(r) = f ′(r)∇r = f ′(r)r/r from chain rule and part (a)(ii). So for
r < a, F = ∇f = −r/a3 and for r > a, F = ∇f = −r/r3. So cts across r = a. Then
for r < a

∆f = (−1/a3)∇ · r = −3/a3

whilst for r > a, using part (b)(i)

∆f = (−1/r3)∇ · r−∇(1/r3) · r = −3/r3 + 3/r5r · r = 0

using part (a) and r · r = r2. So as required, with C = −3/a3.

(d) (Unseen, intended to be more challenging)

With ∆g = 0, choose f from part (c) so that ∆f = −3/a3. Now f = 0 on r = a and
n̂ · ∇f = (r/a) · (−r/a3) on r = a which equates to −1/a2 on r = a. Putting f and g
into Green’s Identity (part (b)(ii)) gives

(−3/a3)

∫

V

g dV = (−1/a2)

∫

∂V

g dS

and hence result.

If g = 1, then ∆g = 0 and the volume integral is just 4

3
πa3 whilst the surface integral

is 4πa2 and hence the formula works.
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